RS PRO PT100 RTD Sensor, 4mm Dia, 25mm Long, 4 Wire, Probe, Class B +200°C Max
- RS庫存編號:
- 123-5607
- 製造商:
- RS PRO
可享批量折扣
單價 个**
HK$357.00
33 現貨庫存,可於3工作日發貨。*
* 交貨日期可能會根據您選擇的數量和交貨地址而變更。
訂單金額滿 HK$850.00 即可享受 免費 送貨服務
單位 | 每單位 |
---|---|
1 - 4 | HK$357.00 |
5 - 24 | HK$344.50 |
25 + | HK$283.60 |
** 參考價格
- RS庫存編號:
- 123-5607
- 製造商:
- RS PRO
- COO (Country of Origin):
- GB
PT100 Sensor
From RS PRO a high-quality and reliable Pt100 PRT (Platinum Resistance Thermometer) or RTD (Resistance Temperature Detector) sensing probe. This RTD probe has a robust construction with the sensing element encased in a rigid 316 stainless steel sheath. The twisted leads are 4 core with a durable and flexible Teflon insulation. This platinum resistance thermometer provides accurate and reliable temperature measurement for a wide range of applications.
PTFE insulated, PT100 element (to BS1904, class B 100Ω @ 0°C) in a stainless steel (316) sheath
Cable is made up from 7//0.16mm strands
4 wire configuration
Temperature range -50 → + 200 °C
1 metre 7/0.16mm Teflon® insulated twisted lead, 4 core
Cable is made up from 7//0.16mm strands
4 wire configuration
Temperature range -50 → + 200 °C
1 metre 7/0.16mm Teflon® insulated twisted lead, 4 core
What is an RTD?
An RTD is a type of temperature sensor based on the correlation between metals and temperature. As the temperature of a metal increases so does its resistance to the flow of electricity. This resistance can be measured and converted to a temperature reading. In a Pt100 RTD, Pt stands for platinum (platinum wire or film) and 100 means that the temperature sensor has a resistance of 100 Ohms at 0°C. Platinum is the most reliable metal due to its linear resistance to temperature relationship over a large temperature range.
What is a Pt100 Probe?
A Pt100 probe is the most rugged form of RTD. The Pt100 temperature sensor element is mounted inside a metal sheath or probe. This protects it from being damaged by the surrounding environment when it is inserted into the process to be measured. The other end of the probe is terminated by 4 insulated wire tails which are connected to the temperature measuring equipment.
Features and Benefits
High stability sensing element with a precision output
IEC 60751 Class B accuracy/tolerance
Temperature measurement range of -50 to +200°C
4 lead wires for accurate readings
Leads connect to any 2 3 or 4 wire PT100 instrument
Rigid 316 corrosion resistant stainless steel sheath for protection of sensing element
Flexible Teflon insulation provides thermal and electrical insulation, impact strength and protects against moisture, corrosion and abrasive chemicals even in extreme temperatures
IEC 60751 Class B accuracy/tolerance
Temperature measurement range of -50 to +200°C
4 lead wires for accurate readings
Leads connect to any 2 3 or 4 wire PT100 instrument
Rigid 316 corrosion resistant stainless steel sheath for protection of sensing element
Flexible Teflon insulation provides thermal and electrical insulation, impact strength and protects against moisture, corrosion and abrasive chemicals even in extreme temperatures
Applications
These PRT sensor probes with their robust design are ideal for use in many general purpose industrial applications including the following:
Air conditioning and refrigeration
Chemical industry
Plastics processing
Stoves and grills
Air, gas and liquid temperature measurement
Exhaust gas temperature measurement
Food processing
Laboratories
Chemical industry
Plastics processing
Stoves and grills
Air, gas and liquid temperature measurement
Exhaust gas temperature measurement
Food processing
Laboratories
Frequently Asked Questions
How Does a PRT Temperature Sensor Work?
The PRT temperature sensor works by placing the sensor element (or process end) into the equipment or process that requires temperature measurement. As the temperature of the platinum resistance thermometer increases its resistance to the flow of electricity increases. For every increase per degree of temperature the electrical resistance also changes by a set ratio, this is called the temperature coefficient. For platinum, this ratio is .00385 ohm/ohm/°C which means for a Pt100 with a 100 ohm resistance the increase in resistance per degree of temperature would be 0.385 ohms. The total resistance reading can, therefore, be measured and converted into temperature.
How is the Resistance Measured?
The resistance generated by the temperature sensor is measured by passing current through one of the wires to produce a voltage. This voltage is then measured using a suitable bridge or voltmeter and the resistance calculated in ohms using Ohms Law (R=V/I). Once the resistance is known you can convert it to a temperature reading using a calibration equation or a Pt100 table. A temperature measurement device or calibrator can also be connected to the leads of the probe that will automatically convert the measured resistance into a temperature reading
Attribute | Value |
---|---|
Sensor Type | PT100 |
Probe Length | 25mm |
Probe Diameter | 4mm |
Minimum Temperature Sensed | -50°C |
Maximum Temperature Sensed | +200°C |
Termination Type | Bare Wire Tail |
Cable Length | 1m |
Probe Material | Stainless Steel |
Process Connection | Probe |
Number Of Wires | 4 |
Accuracy | Class B |